
1 of 8 

Model Answer 

BSC-V - OOP – Object Oriented Concepts (PCSC-502) 

Ans. 1 

(a) Static members: A member of a class can be qualified as static using static keyword. Therefore, static 

members can be either static data member or static member functions. 

 

You are instructed to give an example of either static data member or static member function: 

  

For static data member, it is initialized to zero when the first object of its class is created. No other 

initialization is permitted. Only one copy of the member will be created and that copy will be shared by the 

all objects of its class. Its lifetime is throughout the program. 

 

For static member function, it can have access to only static members declared in the same class.  It can be 

invoked using its classname and scope resolution operator instead of its class object. 

 

Example for declare a static data member and static member function: 

class test 

{ 

 static int x; 

}; 

int test::x; 

 

class test 

{ public: 

 static void fun(void) 

{} 

 }; 

 void main() 

{ 

 test t1; 

 test::fun();  //calling of static member function 

} 

 

 

(b) Protected members: The member whose visibility modifier option is declared as protected is called 

protected member. It can be either data member or member function. These protected members are 

accessible within the class member functions only and they are inheritable. They remain protected in the 

derived class when they inherited publicly or protectedly but become private when they inherited privately. 

Example: 

class test 

{ 

 protected: 

 int x; 

}; 

 

(c) Private and public member functions: In C++ the visibility option of a member function of a class can be 

set as private or public. Member functions having visibility option as private are called private member 

function and having visibility option as public called public member functions. Private member function can 

be accessed within the class member functions only and they are not inheritable. Public member functions 

can be accessed within the class member function and outside the class and require the class object to be 

accessed from outside the class. Public member functions are inheritable. 



2 of 8 

 

class test 

{ 

 private: //by default all members are private until they are specified by some other visibility options 

 void fun(void){ //private members are accessible } 

 public: 

 void fun1(){ //private members are accessible} 

}; 

Void main() 

{ 

 test t1; 

 [t1.fun();////private members are not allowed] 

 t1.fun1(); 

} 

  

 

(d) Member functions declared outside the class are called explicit declaration of member function. For the 

expliĐit deĐlaƌatioŶ of ŵeŵďeƌ fuŶĐtioŶs ǁe ƌeƋuiƌe the sĐope ƌesolutioŶ opeƌatoƌ i.e. ͞::͟. 
Class test 

{ 

 int fun(int);//only declaration of the member function without body 

}; 

int test::fun(int) 

{ 

//body of function declared explicitly 

} 

 

 

(e) Structure, union, class and enumeration are user defined data types in C++. To declare a data type which can 

hold heterogeneous data items within it we can use user defined data types. Keyword to declare user 

defined data types are struct, union, class and enum. 

class test 

{ 

 Int x; 

char y; 

float z; 

public: 

void fun1(int, float){} 

}; 

 

 

2. Polymorphism means single name multiple forms. It can be achieved by two different ways, one is compile 

time which is a result of early binding and another one is run time which is a result of late binding. We can 

chart different forms of polymorphism as given below: 



3 of 8 

  
Polymorphism achieved by function overloading as the example given below:  

#include<iostream.h> 

#include<conio.h> 

#include<math.h> 

int computeArea(int x, int y) 

{ 

 return x*y; //returns area of a rectangle (or square having same length arms)  

} 

 float computeArea(int x) 

{ 

 return (22/7)*x*x; //returns the area of a circle 

} 

float computeArea(int x, int y, int z) 

{ 

 float s=(x+y+z)/2; 

 return sqrt(s*(s-x)*(s-y)*(s-z));//returns the area of a triangle 

}   

 Void main() 

{ 

 clrscr(); 

 Đout<<͟aƌea of the ƌeĐtaŶgle of aƌŵs ϱĐŵ aŶd ϲĐŵ is: ͟<<ĐoŵputeAƌea;ϱ,ϲͿ; 
 Đout<<͟aƌea of the sƋuaƌe of all aƌŵs ϱĐŵ is: ͟<<ĐoŵputeAƌea;ϱ,ϱͿ; 
 Đout<<͟aƌea of the ĐiƌĐle of ƌadious ϳĐŵ is: ͟<<ĐoŵputeAƌea;ϳͿ; 
 Đout<<͟aƌea of the tƌiaŶgle of aƌŵs ϱĐŵ, ϲĐŵ aŶd ϳ is: ͟<<ĐoŵputeAƌea;ϱ,ϲ,ϳͿ; 
 getch(); 

} 

Here we overloaded the function computeArea(). The names of the functions are same but they are 

returning areas of different shapes such as rectangle, circle and triangle. In This example, polymorphism is 

done by using different set of passing arguments for each function. The compiler can differentiate the calling 

of function by the difference in passing arguments of the fuŶĐtioŶ. That’s ǁhǇ it is assuŵed as 
polymorphism achieved at compile time or early binding. 

 

 

3.  

#include<iostream.h> 

#include<conio.h> 

#include<string.h> 

class string 

{ 

 char *x; 

 public: 

 string(void){} 

 string(char *in) 

 { 

Polymorphism 

compile time 

function 

overloading 

operator 

overloading 

run time 

virtual 

functions 



4 of 8 

  x=in; 

 } 

 string operator+(string s) 

 { 

  string temp; 

  temp.x=strcat(x,s.x); 

  return temp; 

 } 

 void display(void) 

 { 

  cout<<x<<"\n"; 

 } 

}; 

void main(void) 

{ 

 clrscr(); 

 string s1("India is "),s2("great"); 

 string s3; 

 s3=s1+s2; 

 s3.display(); 

 getch(); 

} 

  

 

4. Reusability is an important feature of object oriented concepts. C++ strongly supports reusability. Once a 

class is designed, compiled and applied successfully then that class can be reused by any other programmer 

at any time. Reusability of coding can be achieved by many ways in C++; one of them is inheritance. This is 

basically creating new classes, reusing the properties of existing classes or extending the existing classes. 

Heƌe the eǆistiŶg Đlasses ĐaŶ ďe teƌŵed as ͞ďase Đlass͟ aŶd the Ŷeǁ Đlasses ĐaŶ ďe teƌŵed as ͞deƌiǀed 
Đlass͟. Theƌe aƌe diffeƌeŶt foƌŵs of iŶheƌitaŶĐe like siŶgle iŶheƌitaŶĐe, ŵultileǀel iŶheƌitaŶĐe, ŵultiple 
inheritance and hybrid inheritance.  

 

 Single inheritance: 

   

Here class A is the base class and class B is the derived class. Properties of class A can be visible in 

class B (along with its own properties if any) as per the visibility mode used at the time of 

inheritance. In single inheritance there is one level of inheritance. For example: 

#include<iostream.h> 

Class base  //base class 

{ 

 int x; //private not inheritable and not accessible outside the class 

 public: // members are inheritable and also accessible outside the class 

  int y; 

  void fun(int a, int b) 

  {//body of fun} 

}; 

Class derived : public base  //derived class inheriting the base class publicly 

{ 

 int p; //private not inheritable and not accessible outside the class 

 public: // members are inheritable and also accessible outside the class 

  int q; 

A 

B 



5 of 8 

  void fun1() 

{//body of fun1} 

}; 

Void main() 

{ 

 derived d1; 

 [dϭ.ǆ=ϭϬ// aĐĐess deŶied as pƌiǀate ŵeŵďeƌs ĐaŶ’t be inherited] 

 d1.y=20// access of base class public property through derived class object 

 d1.fun(10,20)// access of base class public property through derived class object 

 [d1.p=10// accsess deŶied as pƌiǀate ŵeŵďeƌs ĐaŶ’t aĐĐessed outside the Đlass] 
d1.q=10// access of own public members 

d1.fun1()// access of own public members 

} 

 

 Multiple inheritance: 

Here the class C inherits the attributes of two classes A and B. In case of multiple 

inheritance a class can inherit the attributes of two or more classes. It allows us to 

combine the features of several existing classes as a starting point for defining a 

new class. For example: 

 

 

Class base1  //base class 

{ 

 int x; //private not inheritable and not accessible outside the class 

 public: // members are inheritable and also accessible outside the class 

  int y; 

  void fun(int a, int b) 

  {//body of fun} 

}; 

Class base2  //base class 

{ 

 int p; //private not inheritable and not accessible outside the class 

 public: // members are inheritable and also accessible outside the class 

  int q; 

  void fun1(int a, int b) 

  {//body of fun1} 

}; 

Class derived : public base1, public base2  //derived class inheriting two base classes publicly 

{ 

 int m; //private not inheritable and not accessible outside the class 

 public: // members are inheritable and also accessible outside the class 

  int n; 

  void fun2() 

{//body of fun1} 

}; 

Void main() 

{  

derived d1; 

 [dϭ.ǆ=ϭϬ// aĐĐess deŶied as pƌiǀate ŵeŵďeƌs ĐaŶ’t ďe iŶheƌited] 
 d1.y=20// access of base class public property through derived class object 

 d1.fun(10,20)// access of base class public property through derived class object 

A B 

C 



6 of 8 

  

[d1.p=10// aĐĐess deŶied as pƌiǀate ŵeŵďeƌs ĐaŶ’t ďe iŶheƌited] 

d1.q=10// access of base class public property through derived class object 

d1.fun1()//access of base class public property through derived class object  

 

 d1.m=10//private not inheritable and not accessible outside the class 

d1.n=10// access of own public members 

d1.fun2()// access of own public memberss 

  } 

 

 

5. Rules to declare constructor and destructor of a class: 

  

 

 Example: 

 #include<iostream.h> 

 class  test 

 { 

  int x; 

  public: 

  test(int a) //constructor with one argument  

  { 

   x=a;  

  } 

  ~test() //destructor  

  { 

   cout<<͟OďjeĐt has ďeeŶ destƌoǇed͟; 

  } 

 }; 

 void main() 

 { 

  test t1(5); //implicit call to the constructor 

  test t2=test(10); //explicit call to the constructor 

   

 } //destructor invoked automatically twice with the destruction of the object t1 and t2 

 Relevancy and utility: 

Constructor Destructor 

 Constructor name must be same as class name  Destructor name must be same as class 

name 

 It has no return type, not even void  ~ symbol before the name of destructor is 

must. 

 It has to be declared in the public section    It never take any argument 

 It ĐaŶ’t ďe ǀiƌtual  It never return any value 

 It is invoked automatically with the   It is invoked automatically when the 

object is destroyed 

 Multiple constructors is  allowed  

 Like other function, it can have arguments  

 It is invoked automatically when the object is 

created 

 

 One can overload constructor  



7 of 8 

Though any object creation invokes default constructor, we can create our customized constructor as per 

the necessity of the program and it may perform any startup job specifically assignment of data members. 

As per the example, we have created one parameterized constructor which can initialize the value of private 

data member x of the class test. Using that constructor we can assign the value of x at the time of 

declaration of test class object. 

For destructor, we can be sure the destruction of the object immediately after the expiration of the objects 

by customizing the destructor. In the example we would receive two messages of confirmation of 

destruction of objects t1 and t2. 

6. 

 class  A 

 { 

  //body of class A 

 }; 

 class  B : public A 

 { 

  //body of class B 

 }; 

 class  C : public B 

 { 

  //body of class C 

 }; 

 class  D : public C 

 { 

  //body of class D 

}; 

 class  E : public C 

 { 

  //body of class E 

 }; 

 class  F : private D , private E 

 { 

  //body of class F 

 }; 

It is an example of hybrid inheritance as the total inheritance contains multilevel and multiple inheritance 

both. 

 

 

7.   

Features of C++: 

 The C++ programming language is based on the C language.  

In C++, you can develop new data types that contain functional descriptions (member functions) as well as 

data representations. These new data types are called classes. The work of developing such classes is known 

as data abstraction. You can work with a combination of classes from established class libraries, develop 

your own classes, or derive new classes from existing classes by adding data descriptions and functions. New 

classes can contain (inherit) properties from one or more classes. The classes describe the data types and 

functions available, but they can hide (encapsulate) the implementation details from the client programs.  

You can define a series of functions with different argument types that all use the same function name. This 

is called function overloading. A function can have the same name and argument types in base and derived 

classes.  



8 of 8 

Declaring a class member function in a base class allows you to override its implementation in a derived 

class. If you use virtual functions, class-dependent behavior may be determined at run time. This ability to 

select functions at run time, depending on data types, is called polymorphism  

You can redefine the meaning of the basic language operators so that they can perform operations on user-

defined classes (new data types), in addition to operations on system-defined data types, such as int, char, 

and float. Adding properties to operators for new data types is called operator overloading.  

The C++ language provides templates and several keywords not found in the C language. Other features 

include try-catch-throw exception handling, stricter type checking and more versatile access to data and 

functions compared to the C language.  

Advantages of C++: (you can refer benefits of OOP from Balaguruswami) 

1: Stronger Type Checking - the use of classes, inheritance, automatic type conversions. 

  

2: Type safe linkage - you can't accidentally call a routine from another module with the wrong type and/or 

number of arguments. 

  

3: A complex data type is provided. It includes all the standard arithmetic operations, implemented as 

operators, not function calls. 

  

4: User-defined operators and function overloading are supported. When you design a data type you can 

specify which operators and functions are provided. 

  

5: You can define automatic type conversions to convert between data types.  

  

6: Provides inline functions which combine the efficiency of using macros with the safety of using functions - 

simply prepend the word 'inline' in front of the function - if the compiler can inline it, it will. 

  

 

8. 

 

 
 

  

Data types in 
C++ 

User defined  

structure union class enumeration 

Built-in 

integral 

int char 

void 
Floating 

point 

float double 

Derived 

array function pointer reference 


